

Effect of seasoning time on volatile compounds of Toscano dry-cured ham: first results

*Dipartimento di Scienze Zootecniche - Università di Firenze **Dipartimento di Scienza del Suolo e Nutrizione della Pianta - Università di Firenze

The objective of this study is to evaluate the effect of seasoning time on aromatic profiles of Toscano dry-cured ham.

The Tuscan dry-cured ham is a traditional pork meat product from Central Italy with a Protected Denomination of Origin (PDO) registration

ipped with SPME

ge option	
seasoning	On lean tissue the trend is not clear. This is probably due

Compound	RT	Compound	RT	Compound	RT	Compound	RT
Etill acetato (istd 1)	3,22	2,3-Octanedione	20,51	2-Octen-1-ol, (Z)	32,78	Tetradecanal + 2dodecen-1-olo	43,50
Butanal, 2-methyl-	3,86	1-Hexanol	21,84	Butanoic acid	33,53	Heptanoic acid	44,08
Butanal, 3-methyl-	3,87	Nonanal	23,73	2-Decenal, (E)	33,99	2(3H)-Furanone, dihydro-5-pentyl	45,57
Pentanal	5,36	3-Octen-2-one	24,16	Decanoic acid, ethyl ester	33,79	Octanoic Acid	45,84
Butanoic acid, ethyl ester	7,17	2-Octenal, (E)	25,09	2,4-Nonadienal, (E,E)	36,24	Hexadecanal	46,84
Toluene	7,27	1-Octen-3-ol	26,09	Benzaldehyde, 3-ethyl	36,47	Nonanoic acid	47,07
Butanolo (istd 2)	12,37	1-Heptanol	26,31	2-Undecenal	38,21	Phenol, 3,4-dimethyl-	47,57
Hexanal	8,87	Pentadecane	27,51	Oxime-, methoxy-phenyl	38,66	Hexadecanoic acid, ethyl es	47,80
Heptanal	13,35	2,4-Heptadienal, (E,E)	27,93	Ethanol, 1-(2-butoxyethoxy)	38,67	n-Decanoic acid	47,89
Etil esanoato (istd 3)	15,25	3,5-Octadien-2-one	29,07	2,4-Decadienal, (E,E)	40,27	Octadecanal	48,41
Furan, 2-pentyl	15,72	Benzaldehyde	29,13	Hexanoic acid	41,51	9-Octadecenal, (Z)	48,60
Hexanoic acid, ethyl ester	15,72	2-Nonenal, (E)	29,63	Trans-geranilacetone	42,09	Octadecanoic acid, ethyl est	49,02
3-Octanone	15,72	Acetic acid (istd 4)	26,15	Benzyl Alcohol	42,07	Phenol, 3,4-dimethyl- (istd 6)	47,57
1-Pentanol	17,26	Decanal	28,07	Phenylethyl Alcohol	43,20	Dodecanoic acid	49,12
Octanal	18,66	1-Octanol	30,57	Esanoic acid (istd 5)	41,06	Tetradecanoic acid	50,52
2-Heptenal, (Z)	20,30	3,5-Octadien-2-one, (E,z)	31,12	2(3H)-Furanone, 5-butyldihyd	43,37	n-Hexadecanoic acid	52,49

About 80 compounds were identified by comparison with NIST 05 spectral library belonging to: esters, aldehydes organic acids, ketones, alcohols and furans.

The volatile compounds were sampled by SPME

Method

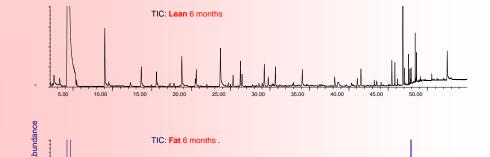
- ✓ Lean or fat tissue sampled from 10 intact hams at different
- CARBOXEN/PDMS/DVB fiber. sorption times 15 min at 60 °C
- \checkmark 0.5 g sample blended with 2 ml $H\dot{}$ 20 + 1 g NaCl in 10 ml vials
- Addition of labeled internal standard mix to normalize Column J&W Innowax 30 m, 0.25 mm, ID 0.5 μ m DF.
 - Lean ANOVA on normalized areas of volatile compounds by compound class

Compounds	Time of seasoning				Sign.
	0	1	3	6	
Aldehydes	20.397	15.496	20.186	28.710	ns
Organic Acids	3.744	16.663	21.240	14.634	**
Alcohols	26.830	5.541	7.486	7.442	ns
Ketones	4.420	10.988	11.264	7.158	**
Esters	1.849	1.956	3.187	1.713	ns
Furans	1.990	4.636	5.417	5.943	**

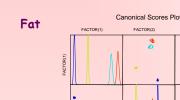
Fat - ANOVA on normalized areas of volatile compounds by compound class

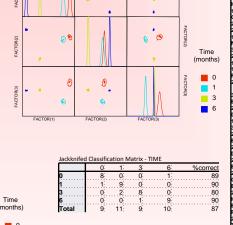
Compounds	Time of sesoning (months)				Sign.
	0	1	3	6	
Aldehydes	7.946	13.343	43.075	26.536	**
Organic Acids	3.966	8.143	15.524	24.894	**
Alcohols	1.010	1.755	2.699	3.175	**
Ketones	2.084	2.049	8.072	4.982	**
Esters	1.694	1.588	7.277	13.618	**
Furans	2.180	6.538	6.075	3.898	**

On adipose tissue a significant increase, during curing time, of organic acids, alcohols and esters was registered. For aldhydes, ketones and furans a increase for the first three months was observed. In the following three nonths there was decrease

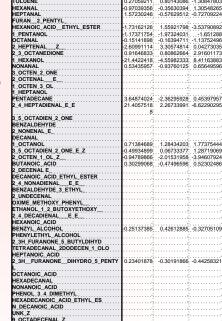

to the high

data


variability


Jackknit	ed Class	ification M	latrix
	Lean	FAT	%correc
Fat	37	. ;1	:97
	5	34	87
Total	42	35	92

Discriminant analysis separate fat from lean samples



Lean vs Fat samples (6 months curing time

Discriminant analysis on normalized peak areas of identified	
compounds separate specimens at different curing time for fat a	and

Ganonical Discriminant Functions Standardized by Within Variances

Evolution of volatile Compounds in ham fat during seasoning

TIC: Fat 0 months

TIC: Fat 6 months

TIC: Fat 3 months

CONCLUSIONS

Lean

0

Canonical Scores Plot

- About 80 compounds were identified belonging to: esters, aldehydes organic acids, ketones, alcohols and furans.
- There were significant differences by compound class during curing time in only in fat specimens
- Discriminant analysis an normalized peak areas separate specimens at different curing time