Pharmacokinetic profiles of antiepileptic drugs by using dried blood spot and Liquid Chromatography-Tandem Mass Spectrometry

Giancarlo la Marca

Mass Spectrometry Lab, Meyer Children's Hospital

Dept of Pharmacology, University of Florence

TOPIRAMATE (TPM) IS AN ANTIEPILEPTIC DRUG

2,3:4,5-Bis-O-(1-methylethylidene)-beta-D-fructopyranose sulfamate

CAS number 97240-79-4

ATC code N03AX11

Chemical data Formula C₁₂H₂₁NO₈S

Mol. mass 339.363 g/mol

1) APPROVED AS MONOTHERAPHY OR ADJUNCTIVE TREATMENT OF PARTIAL AND GENERALISED SEIZURES IN ADULTS AND CHILDREN

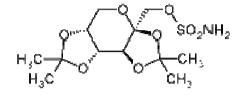
2) TREATMENT OF LENNOX-GASTAUT SYNDROME

TOPI RAMATE (TPM)

Chemically, topiramate is a <u>sulfamate</u>-substituted <u>monosaccharide</u>, related to <u>fructose</u>.

Topiramate is quickly absorbed after oral use.

Most of the drug (70%) is excreted in the urine as unchanged drug. The remainder is extensively metabolized by hydroxylation, hydroxylation, hydroxylation, hydroxylation,

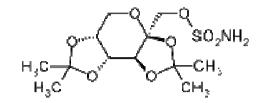

Six <u>metabolites</u> have been identified in humans, none of which constitutes more than 5% of an administered dose.

THE ANTICONVULSANT ACTIVITY OF TPM:

Inhibitory activity against glutamate receptors including N-methyl-d-aspartate (NMDA), kainate (KA) and α -amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA) receptors.

Other studies indicate that TPM can influence the activity of voltage-activated Na⁺ and Ca⁺ channels, can reduce some carbonic anhydrase isozymes or the mitochondrial permeability transition pore.

TOPI RAMATE (TPM)



Doses

- IN ORDER TO AVOID EARLY SIDE-EFFECTS (E.G. COGNITIVE DYSFUNCTION) THE INITIAL DOSE NORMALLY IS LOW AND INCREASED IN SLOW STEPS.
- THE USUAL INITIAL DOSE IS 25 TO 50 MG DAILY IN 2 SINGLE DOSES.
- RECOMMENDED INCREMENTS ARE 25 TO 50 MG EVERY 1 OR 2 WEEKS.
- **OMMON DOSES FOR MAINTENANCE TREATMENT ARE 100 TO 200 MG DAILY.**
- **THE HIGHEST DOSE POSSIBLE IS 1,000 MG DAILY IN DIVIDED DOSES.**

TOPI RAMATE (TPM)

SIDE EFFECTS

- CHANGE IN TASTE (CARBONATED BEVERAGES, ESPECIALLY DIET SODAS AND BEER, TASTE PARTICULARLY BAD)
- FEELINGS OF PINS AND NEEDLES IN THE HEAD AND EXTREMITIES
- COGNITIVE DEFICIENCY (PARTICULARLY WORD-FINDING DIFFICULTY)
- LETHARGY
- RENAL (KIDNEY) STONES
- IMPAIRMENT OF FINE MOTOR SKILLS
- VISION ABNORMALITY AND TRANSIENT OR PERMANENT VISION LOSS
- WEIGHT LOSS
- MENSTRUAL DISORDER

THE CLINICAL EFFECT OF THIS DRUG CORRELATES BETTER WITH BLOOD LEVEL THAN WITH DOSES.

THIS MAKES THERAPEUTIC MONITORING IMPORTANT.

TOPIRAMATE (2-25 µg/mL) has been dosed mostly by

HPLC UV detection: Sample volume required 1ml serum-2ml blood, LOQ 0.4µg/mL). liquid-liquid extraction and subjected to derivatization with 9-fluorenylmethyl chloroformate

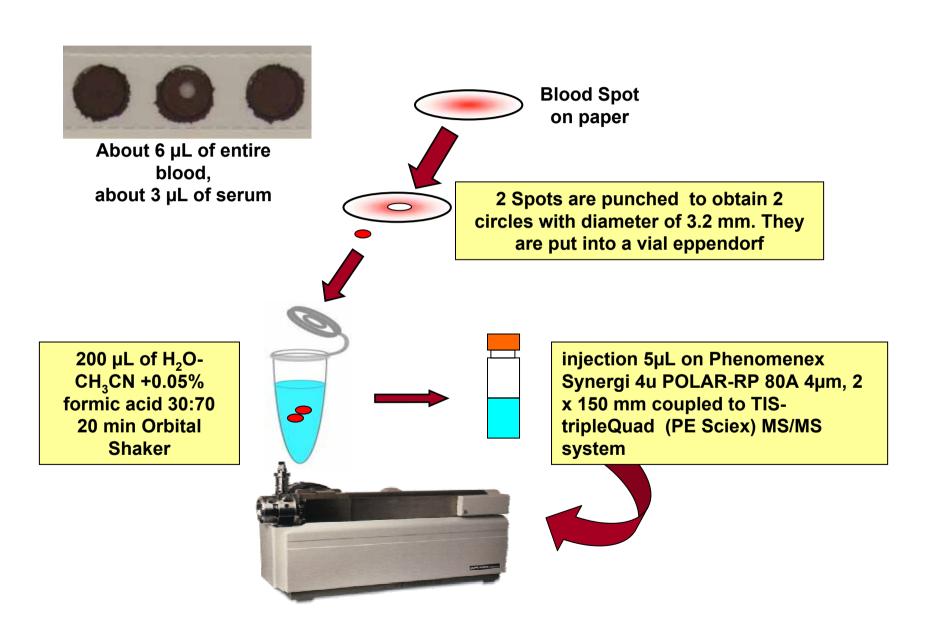
Bahrami et al, 2005, J Chromatogr B

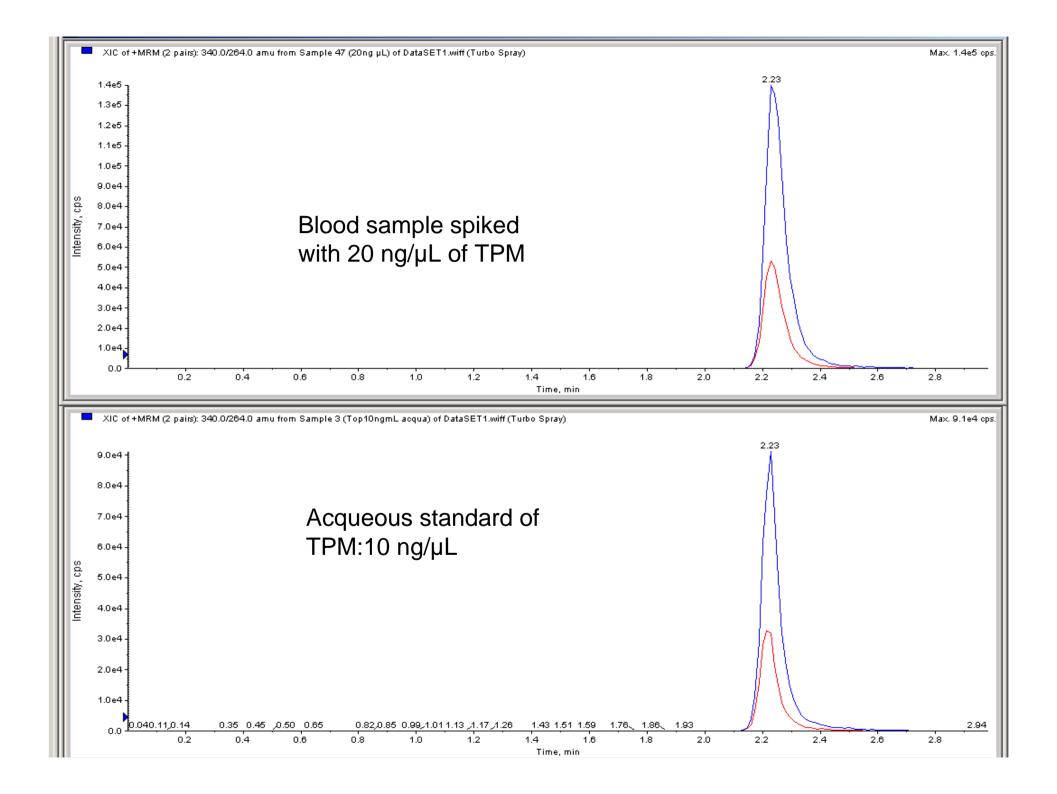
HPLC-MS:(0.5 ml serum; LOQ 1μgmL, LOD 0.3 μg/mL)

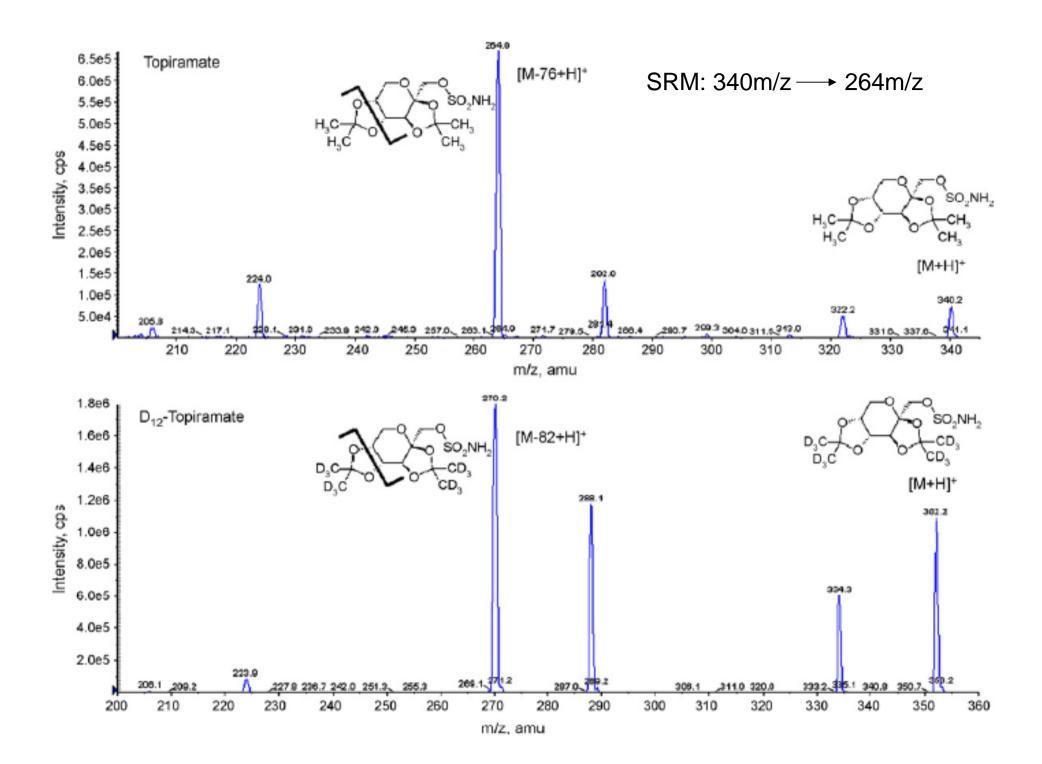
Masucci et al, 1998, J Mass Spectrom. Christensen et al, 2002, Ther Drug Monit. Britzi et al, 2003, Ther Drug Monit.

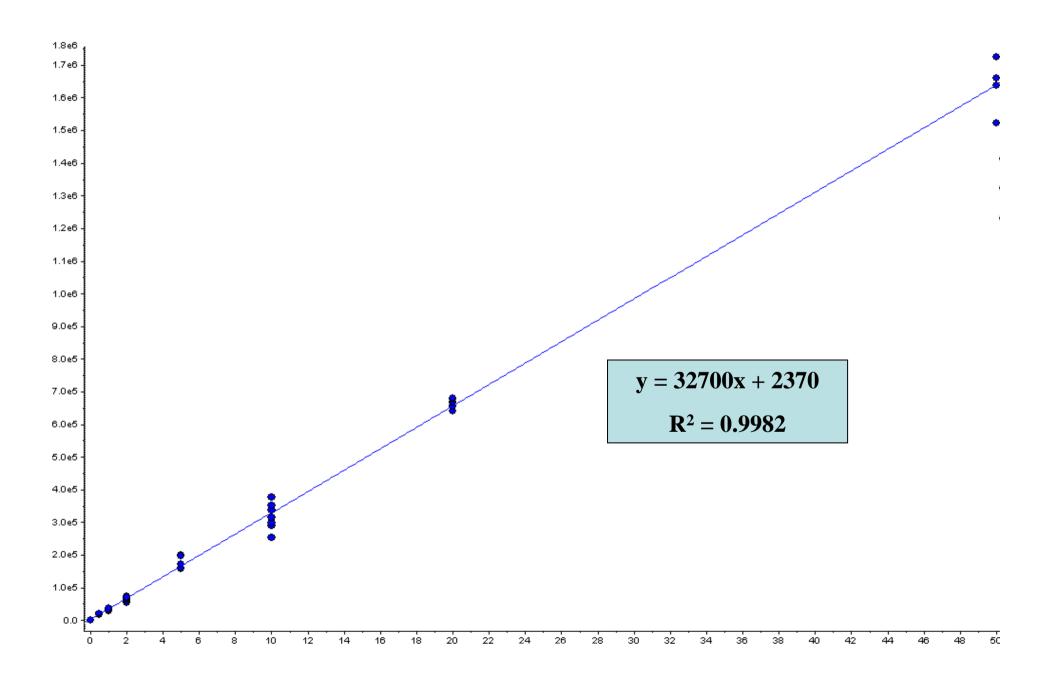
GC/NPD liquid-liquid extraction and nitrogen phosphorus detection

Riffitts et al, 1999, J Pharm Biomed Anal. Tang et al, 2000, Ther Drug monit.

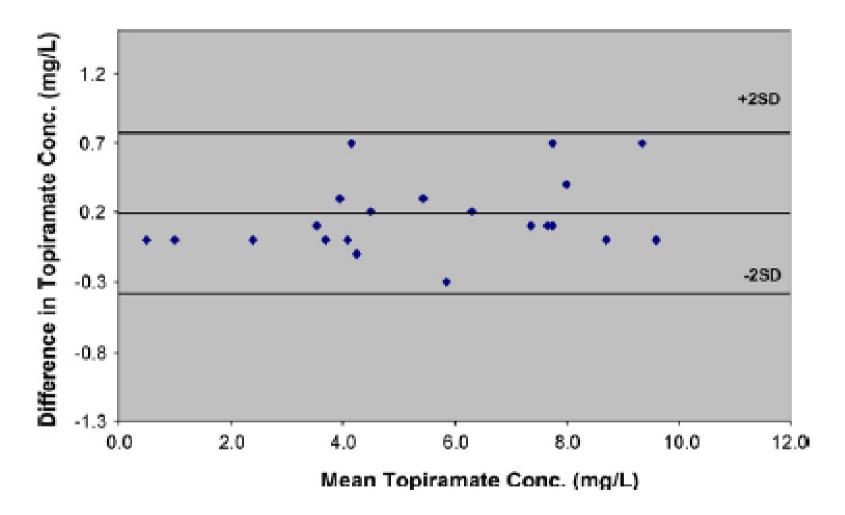

Capillary Electrophoresis with indirect UV detection


Klockow-Beck et al, 1998, J Chromatogr B


Immunometric method (0.2 ml serum, LOQ 1μg/mL, LOD 0.3 μg/mL)


DeGrella et al, 1988, Am Biotech Lab

SAMPLE PREPARATION FOR LC-ESI-MS/MS ANALYSIS

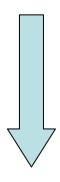


INTRADAY							
Expected Concentration n=7 (ng/µL)	Mean	SD	%CV	Accuracy			
0	0	0					
0.5	0.51	0.05	10.32	101.24			
1	0.91	0.11	12.37	91.06			
2	1.95	0.22	11.27	97.30			
5	5.42	0.56	10.36	108.45			
10	9.63	1.25	12.97	96.33			
20	20.20	0.43	2.12	100.99			
50	49.92	2.58	5.16	99.84			

INTERDAYS (n=4)								
Expected Concentration n=5 (ng/µL)	Mean	SD	%CV	Accuracy				
0	0	0						
0.5	0.57	0.05	9.49	113.16				
1	1.10	0.10	9.09	110.49				
2	2.05	0.15	7.40	102.45				
5	4.81	0.38	7.76	96.23				
10	9.33	0.85	9.12	93.33				
20	19.95	0.88	4.35	99.76				

LOD (S/N > 3) in DBS 3.32 ng/mL LOQ (S/N > 10) in DBS 16.6 ng/mL

Analisi comparativa con metodo di riferimento FPIA (21 campioni)



100

$$(DBS_{[analyte]}/[1-hematocrit]) \times (1-f_{BC}) = plasma_{[analyte]}$$

where f_{BC} is the fraction of analyte bound to blood cells, could be obtained by an *in vitro* test.

STUDI DI FARMACOCINETICA NEI NEONATI O NEI BAMBINI PICCOLI

ETICAMENTE E
TECNICAMENTE
IMPOSSIBILI

FULL-LENGTH ORIGINAL RESEARCH

Topiramate concentrations in neonates treated with prolonged whole body hypothermia for hypoxic ischemic encephalopathy

*Luca Filippi, †‡Giancarlo la Marca, *Patrizio Fiorini, *Chiara Poggi, §Giacomo Cavallaro, †Sabrina Malvagia, ‡Domenico E. Pellegrini-Giampietro, and ¶Renzo Guerrini

*Neonatal Intensive Care Unit, Department of Critical Care Medicine, "A. Meyer" University Children's Hospital, Florence, Italy; †Metabolic Unit, Department of Pediatric Neurosciences, "A. Meyer" University Children's Hospital, Florence, Italy; ‡Department of Pharmacology, University of Florence, Florence, Italy; §Institute of Pediatrics and Neonatology, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, University of Milan, Milan, Italy; and ¶Department of Neurology and Neurosurgery, "A. Meyer" University Children's Hospital, Florence, Italy

TPM concentrations were measured at the beginning of hypothermia, before the first dose of TPM (T_0) , and at $T_{0.5}$, T_1 , $T_{1.5}$, T_2 , T_4 , T_6 , T_8 , T_{12} , T_{16} , T_{20} , and T_{24} (before the second dose), at T_{26} , T_{30} , T_{34} , T_{40} , and T_{48} (before the third dose), and at $T_{48.5}$, T_{49} , $T_{49.5}$, T_{50} , T_{52} , T_{54} , T_{56} , T_{60} , T_{64} , T_{68} , and T_{72} . All of these four newborns were also on PB.

Table 2. Mean ± SD topiramate pharmacokinetic profiles of newborns who reached the virtual steady state. Data are plotted that distinguish between newborns in DH or MH and between newborns receiving PB or not

	All newborns (n = 9)	Newborns with DH (n = 3)	Newborns with MH (n = 6)	p-value	Newborns with PB (n = 4)	Newborns without PB (n = 5)	p-value
C _{max.} mg/L, mean ± SD	17.96 ± 4.2	17.87 ± 6.4	18.71 ± 3.2	0.219	15.38 ± 5.3	19.87 ± 1.9	0.060
C _{min} , mg/L, mean ± SD	10.35 ± 2.5	10.54 ± 3.2	10.77 ± 1.9	0.199	8.70 ± 2.9	11.67 ± 0.9	0.032
T _{max} , h, mean ± SD	3.80 ± 2.2	4.00 ± 1.1	4.08 ± 2.7	0.333	3.13 ± 2.4	4.40 ± 2.2	0.216
AUC ₀₋₂₄ , mg/L/h, mean ± SD	343.2 ± 72.2	318.1 ± 101.6	366.2 ± 48.1	0.096	302.4 ± 89.7	375.8 ± 37.4	0.068
Cwg, mg/L, mean ± SD	14.29 ± 3.0	13.25 ± 4.2	15.26 ± 2.0	0.096	12.60 ± 3.7	15.66 ± 1.6	0.068
T _{1/2} , h, mean ± SD	35.58 ± 19.3	48.82 ± 4.6	29.03 ± 23.8	0.080	26.46 ± 17.7	42.88 ± 19.1	0.113
CL/F, ml/kg/h, mean ± SD	15.42 ± 4.6	15.72 ± 7.3	13.87 ± 1.9	0.084	17.92 ± 6.2	13.42 ± 1.4	0.078

DH, deep hypothermia; MH, mild hypothermia; PB, phenobarbital; C_{max} , maximal plasma concentration; C_{min} , minimal plasma concentration; T_{max} , time of peak concentrations; AUC_{0-24} , area under plasma concentration-time curve from 0 to 24 h; C_{avg} , average plasma concentration; $T_{1/2}$, half-life; CL/F, apparent oral clearance.

A new rapid micromethod for the assay of phenobarbital from dried blood spots by LC-tandem mass spectrometry

*†‡Giancarlo la Marca, *‡Sabrina Malvagia, §Luca Filippi, ¶Francesca Luceri, #Gloriano Moneti, and *‡**Renzo Guerrini

*Mass Spectrometry and Pharmacology Laboratory, Pediatric Neurology Unit and Laboratories, Department of Neurosciences, A Meyer Children's Hospital, Florence, Italy; †Department of Pharmacology, University of Florence, Florence, Italy; †Pediatric Neurology Unit and Laboratories, A. Meyer Children's Hospital, Florence Department of Neurosciences, University of Florence, Florence, Italy; §Neonatal Intensive Care Unit, A. Meyer University Children's Hospital, Florence, Italy; ¶General Laboratory, Azienda Ospedaliera Careggi, Florence, Italy; #CISM, Mass Spectrometry Center, University of Florence, Florence, Italy; and **IRCCS Fondazione Stella Maris, Pisa, Italy

Epilepsia, **(*):1–5, 2009 doi: 10.1111/j.1528-1167.2009.02204.x

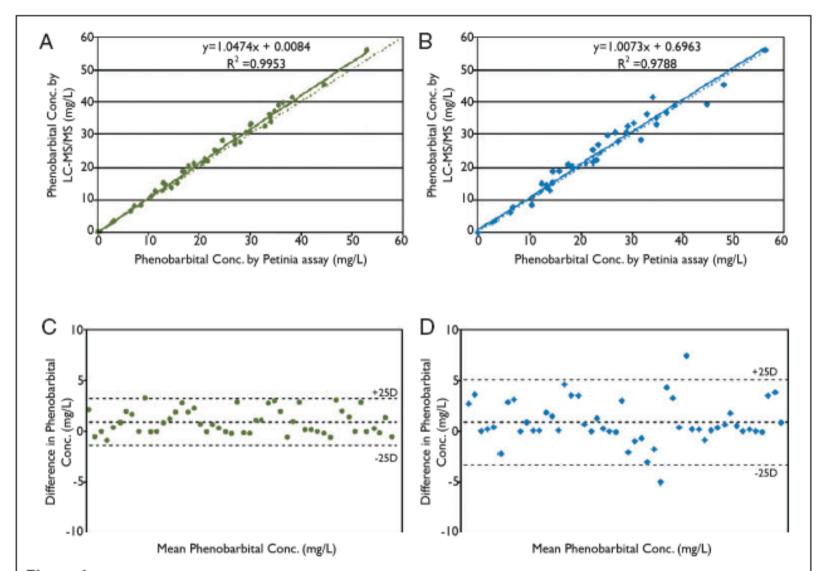


Figure 1.

LC-MS/MS versus Petinia: (A) and (C) adjusted for measured haematocrit. (B) and (D) adjusted for theoretical haematocrit (40% in adults; 55% in newborns). The dashed line is the line of identity, and the solid line is the regression line. Epilepsia © ILAE

CONCLUSION

The analysis performed on DBS allows a great advantage in terms of costs, affordability, easiness of sampling, especially in young children.

Because of improved specificity, sensitivity and decreased sample volume requirements, this LC-MS/MS method should be particularly useful for monitoring TPM therapy in pediatric patients, for PK and research studies.