MASS SPECTROMETRY IN NON-ENZYMATIC PROTEIN GLYCATION STUDIES

R.Seraglia, A.Lapolla and P.Traldi

The Maillard reaction

Strategies for glycated proteins analysis

Strategies for Glycated Protein Analysis: Mass Spectrometric Approaches

MALDI spectra of BSA at different incubation times

Molecular Mass vs incubation time for BSA incubated wth glucose at different concentrations

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

MALDI in the Study of Glycated Plasma Proteins

A.Lapolla, D.Fedele, R.Seraglia, S.Catinella, L.Baldo, R.Aronica, P.Traldi

Diabetologia 1995

MALDI spectra of plasma protein fractions from a healthy and a diabetic subject

Glycation parameters

© NGT © well controlled DM © poorly controlled DM

FPG (mmol/l)

Furosine (µgFur/mg prot)

HbA1c (%)

 ΔM _{HSA}

MALDI in the Study of Glycated Globins

A.Lapolla, P.Traldi, et all.

Rapid Commun Mass Spectrom 1996 Rapid Commun Mass Spectrom 1998 Clin Chem 1999

MALDI spectra of health subject erythrocyte globin

MALDI spectra of diabetic patients erythrocyte globin

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

MALDI n the Study of Glycated γ-Globulins

A.Lapolla, P.Traldi et al.

Rapid Commun Mass Spectrom 1997 J Am Soc Mass Spectrom 2000

MALDI mass spectra of IgG

Standard IgG

IgG protein fraction of a poorly controlled diabetic subject

ΔM values of IgG

controls well controlled DM poorly controlled DM

MALDI Mass Spectra Standard IgG after papain digestion

αcarbon trace of lgG

SAS of lysine residues of lgG

Mass Spectrometric Approaches in the Study of AGE Peptides

A.Lapolla, D.Fedele, L.Martano, CN Aricò, M.Garbeglio, R.Seraglia, D.Favretto, P.Tradi

J Mass Spectrom 2001

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

Ionic species vs retention time reconstructed from HPLC/ESI/MS runs of control Albumin

Ionic species vs retention time reconstructed from HPLC/ESI/MS runs of glycated Albumin

UV(214nm) Chromatogram of trypsin

UV(214nm) Chromatogram of trypsin digestion products in vitro glycated HSA

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

Total ion current chromatogram of trypsin digestion products of control HSA

Total ion current chromatogram of trypsin digestion products *in vitro* glycated HSA

ESI-MS spectrum TIC chromatogram run of of trypsin digestion products of control HSA

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

ESI-MS spectrum TIC chromatogram run of trypsin digestion products *in vitro* glycated HSA

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

Petides identified by accurate mass measurements based on HSA sequence

1 DAHKSEVAHR FKDLGEENFK ALVLIAFAQY LQQCPFEDHV K 51 KTCVADESAE NCDKSLHTLF GDKLCTVATL R **OEPERNE** 101 CFLQHKDDNP NLPRLVRPEV DVMCTAFHDN EETFLKKYI FIARRHPYFY 151 APELLFFAKR Y AACLLP KLDELRDEGK ASSAKQR 201 ASLOKFGERA FKAWAVARLS ORFPKAEFAE VS VHTECCHGDL YICENQDS ISSKLKECCE KPLLEK<mark>SHCI</mark> 251 LECADDR 301 DLPSLAADFV ESKDVCKNYA EAKDVFLGMF LYEYARRHPD 351 C CAAADPHECY AK<mark>VFDEFKPL</mark> VEEPQNL LVR YTKKVPQVST PTLVEVSRNL GKVGSKCCKH 401 YKEQ 451 DYLSVVLNQL CVLHEKTPVS DRVTKCCTES LVNRRPCFSA 501 EFNAETFTFH ADICTLSEKE RQIKKQTALV ELV HKPKAT KEQLK <mark>-VEK</mark>CCK ADDKETCFAE EGKKLVAASQ AALGL 551 FAA

Colour code:

DAHK: sequences revealed only in control HSA DAHK: sequences revealed only in glycated HSA

DAHK: sequences revealed both in control HSA and glycated HSA

DAHK: sequences glycated (+162u)

DAHK: sequences probably involved in cross-linking

Possible modifications of peptides due to glycation processes

Possible modifications of	Mass increment	
N=CH-(CHOH) ₄ -CH ₂ OH	Peptide+ C ₆ H ₁₀ O ₅	+162.052824
N=CHCH ₂ C(=O)-(CHOH) ₂ -CH ₂ OH	Peptide+ C ₆ H ₁₀ O ₅ - H ₂ O	+144.042259
N=CHCH ₂ C(=O)C(=O)CH ₂ CH ₂ OH	Peptide+ C ₆ H ₁₀ O ₅ - 2H ₂ O	+126.031694
N=CHCH ₂ C(=O)C(=O)CH=CH ₂	Peptide+C ₆ H ₁₀ O ₅ - 3H ₂ O	+108.021129
N=CH-(CHOH) ₄ -CH ₂ OPO ₃ H ₂	Peptide+ C ₆ H ₁₀ O ₅ + HPO ₃	+242.019156
N=CHCH ₂ C(=O)-(CHOH) ₂ -CH ₂ OPO ₃ H ₂	Peptide+ C ₆ H ₁₀ O ₅ + HPO ₃ - H ₂ O	+224.008591
\sim N=CHCH ₂ C(=O)C(=O)CH ₂ CH ₂ OPO ₃ H ₂	Peptide+ C ₆ H ₁₀ O ₅ + HPO ₃ - 2H ₂ O	+205.998026
*(PEPTIDES WITH MORE THAN 1 LYSINE)	Peptide+2C ₆ H ₁₀ O ₅	+324.105648
*	Peptide+3C ₆ H ₁₀ O ₅	+486.158472
*	Peptide+4C ₆ H ₁₀ O ₅	+648.211296
─N=CHCH ₂ OH ─NHCH ₂ C(=O)H	Peptide+C ₂ H ₂ O	+42.010565
NHCHC(=O)H	Peptide+C ₂ O	+39.994915
─_NHCH ₂ C(=O)OH	Peptide+C ₂ H ₂ O	+58.005479

Possible cross-links

	Possible cross-links				
Structure					
	Peptide 1+ Peptide 2+ $C_6H_6O_3$	Peptide 1+ Peptide 2+ 4C	Peptide 1+ Peptide 2+ 2C –2H	Peptide 1+ Peptide 2+ 2C	
Mass increment	+126.031694	+48.0	+21984350	+24.0	

Ionic species detected in ESI spectra of glycation products of samples and their possible origin and sequence

Control HSA Observed mass 1667.76435	Glycated HSA Observed mass	Position and modification	Sequence	Theoretical mass
	1675.8402	160-162+437-445+24u	RYK+CCKHPEAKR+24u	
	1677.80277	429-432+565-574+48u	NLGK+ETCFAEEGKK+48u	
	1686.3338			
1695.69501				
	1708.9774			
1742.89583		146-159	HPYFYAPELLFFAK	
1762.81877				
1798.95955				
	1812.94612	226-240+162u	AEFAEVSKLVTDLTKK+162u	
	1828.82736	163-174+349-351+126u	AAFTECCQAADK+AK+126u	
		187-190/561-564+546- 557+22u	DEGK/ADDK+AVMDDFAAFVE K(1Met-ox)+22u	
1848.81111				
	1903.047747	206-212+526-534+48u	FGERAFK+QTALVELVK+48u	
1909.12529				
1910.93397		485-500	RPCFSALEVDETYPK	1910.9322

Create PDF with PDF4U. If you wish to remove this line, please click here to purchase the full version

Conclusions

- The data obtained from *in vitro* glycation of HSA pointed out these crucial points:
- the enzymatic digestion of glycated protein is more difficult than that of genuine protein;
- glycation can modify the site of enzyme cleavage;
- the presence of a large number of species originating from glycation-induced cross-linking processes;
- the MS/MS spectra of doubly charged glycated peptides are not particularly useful for sequence investigation but allow an unequivocal identification of their chemical nature.

An in vivo investigation on AGEpeptides:

preliminary results

MALDI sample preparation

